Converting Four lane roadways into Five lane roadways on Urban Structure: Study on Safety Effectiveness

Abstract

- In urban or suburban areas with large number of access points, fourlane undivided highways are prone to crashes due to left-turning and through movements in a single lane.
- Expensive countermeasures like conversion from undivided to divided road are recommended by many studies. One inexpensive alternative is reconfiguring the existing roadways by either increasing or decreasing the number of lanes.
- This study investigated the safety impact of converting four lane undivided roadways (4U) to five lane undivided roadways (5T) with a two-way left-turn lane (TWLTL). This study used Empirical Bayes method to determine the safety impact of this inexpensive countermeasure.

Safety Effectiveness

• The EB estimate of the expected number of crashes without treatment, $N_{expected, t, b}$, is computed from the following equation: $N_{expected, t, b} = w \times N_{predicted, t, b} + (1 - w) \times N_{observed, t, b}$ $w = \frac{1}{1 + k \times \sum_{all study} N_{predicted}}$

where,

 w = weighted adjustment to be placed on the predictive model estimate; and

• The findings of the current study indicated a positive safety impact. The benefit-cost ratio of this conversion ranges from 97 to 379. The current findings indicate that conversion of 4U to 5T is a feasible inexpensive solution for urban structure.

Methodology

- This study selected eight sites from Louisiana. This countermeasure requires adding of a TWLTL by restriping (see Figure 1).
- The observational before-after method used in this study is empirical Bayes (EB) Method.
- This method accounts for the effect of regression-to-the-mean, changes in traffic volume (**Table 1**), and other potential changes in the roadway features during the before and after time periods.
- In accounting for regression-to-the-mean, the number of crashes expected in the before period without the treatment (N_{predicted, t, b}) is a weighted average of information from two sources:

- k = over-dispersion parameter of the associated SPF used to estimate N_{predicted}.
- Table 2 enlists the values of site specific Crash Modification Factor (CMF), standard deviations, and 95% confidence interval (CI).
- The CMF values range from 0.35 to 0.84 (except site 6; in which CMF is greater than 1).

Table 2. CMF values and their Variances

Sites	CMF	Var(CMF)	sd(CMF)	95% CI of CMF
Site 1	0.48	0.03	0.18	(0.13, 0.84)
Site 2	0.42	0.01	0.07	(0.28, 0.56)
Site 3	0.62	0.03	0.17	(0.3, 0.95)
Site 4	0.84	0.01	0.11	(0.63, 1.05)
Site 5	0.35	0.00	0.03	(0.28, 0.42)
Site 6	1.18	0.05	0.22	(0.76, 1.6)
Site 7	0.65	0.01	0.10	(0.47, 0.84)
Site 8	0.64	0.01	0.09	(0.46, 0.82)

Benefit-Cost Analysis

The benefit cost ratio for the treatment sites range from 97 to 379. The benefit-cost ratio for all eight segments is shown in Table 3.

Table 3. Benefit-Cost Ratios

Site	Total Benefits (\$)	Total Cost (\$)	B/C Ratio

- The number of crashes observed in the before period at the treated sites (N_{observed, t, b}).
- The number of crashes predicted at the treated sites based on reference sites with similar traffic and physical characteristics (N_{predicted, t, b}).

Figure 1. 4U to 5T Conversion

Table 1. AADT and Overserved Crashes in Before-After Years

	Before Period			After Period		
Sites	Years	AADT (vpd)	Total Crashes	Years	AADT (vpd)	Total Crashes
Site 1	2004-2006	19,867	21	2008-2010	19,767	9
Site 2	2004-2006	19,867	118	2008-2010	19,767	47
Site 3	2008-2010	6,833	39	2012-2014	7,900	20
Site 1	2008 2010	10 200	126	2012 2014	21.000	11/

Site 1	278,951	2,863	97
Site 2	1,387,818	4,809	289
Site 3	810,675	5,382	151
Site 4	1,142,767	7,672	149
Site 5	3,039,771	14,084	216
Site 6	651,252	1,718	379
Site 7	630,598	4,580	138
Site 8	1,076,223	9,046	119
PDO crash cost(\$)	6,623		
Injury Crash cost (\$)	46,518		
Cost per mile (\$)	11,450		

Conclusion

- This study suggests that inserting a two way left turn lane on four lane undivided urban highways can have significant benefit.
- It is also important to note that one-size-fits-all solutions do not usually work in highway safety issues. Caution must be taken when applying this crash countermeasure in other locations.

Acknowledgments

The authors thank Louisiana Department of Transportation and Development for crash data and M. A. Rahman for data preparation.

References

Sun X. and S. Das. Developing Louisiana Crash Reduction Factors. Report No.:

